INTRODUCTION TO DIFFERENTIAL GEOMETRY

100 Points

Notes.

- (a) Begin each answer on a separate sheet.
- (b) Justify all your steps. Assume only those theorems that have been proved in class. All other steps should be justified.
 - (c) \mathbb{R} = real numbers. For a curve we use κ = curvature, τ = torsion.
- 1. [24 points] Let $F(x, y, z) = (3x^2y + e^z 1, 2x + z\cos y)$ so that F defines a C^{∞} map $\mathbb{R}^3 \to \mathbb{R}^2$. Let u, v denote coordinates in \mathbb{R}^2 .
 - (i) Find a paramerized curve $\vec{\alpha} : \mathbb{R} \to \mathbb{R}^3$ such that the curve $F \circ \vec{\alpha}$ passes through the origin (0,0) with velocity (1,1).
 - (ii) Prove that there exists a parametrized curve $\vec{\beta} \colon I \to \mathbb{R}^3$ such that the intersection of $(F \circ \vec{\beta})(I)$ with the *v*-axis contains an open interval in the *v*-axis.
 - (iii) Prove that $F^{-1}((0,0))$ is a regular parametrizable curve near the origin (0,0,0).

2. [16 points]

(i) Let $\vec{\gamma}(t)$ be a regular curve in \mathbb{R}^n . Prove that the curvature $\kappa(t)$ is given by the square-root of the following determinant:

$$\begin{vmatrix} \dot{\vec{\gamma}} \cdot \dot{\vec{\gamma}} & \dot{\vec{\gamma}} \cdot \ddot{\vec{\gamma}} \\ \dot{\vec{\gamma}} \cdot \ddot{\vec{\gamma}} & \ddot{\vec{\gamma}} \cdot \ddot{\vec{\gamma}} \end{vmatrix}$$

(Hint: First verify that the formula doesn't change under reparametrization and then evaluate it using a unit-speed parametrization.)

- (ii) Let f(t) be a C^{∞} function on \mathbb{R} . Find the curvature of the curve $\vec{\gamma}(t) = (t, f(t))$ at t = 0.
- 3. [20 points] Let $\vec{\gamma}(s)$ be a unit-speed curve in \mathbb{R}^3 with $\kappa(s) > 0$ and $\tau(s) \neq 0$ for all s.
 - (i) If γ lies on the surface of a sphere in \mathbb{R}^3 , prove that

$$\frac{\tau}{\kappa} = \frac{d}{ds} \left(\frac{\dot{\kappa}}{\tau \kappa^2} \right).$$

(Hint: Differentiate repeatedly the relation $(\vec{\gamma} - \vec{a}) \cdot (\vec{\gamma} - \vec{a}) = R^2$ where R is the radius and \vec{a} the centre of the sphere.)

- (ii) Conversely, if the above relation holds, prove that $\rho^2 + (\dot{\rho}\sigma)^2$ is a positive constant where $\rho(s) = 1/\kappa(s)$ and $\sigma(s) = 1/\tau(s)$. Calling this constant R, deduce that $\vec{\gamma}(s)$ lies on a sphere of radius R.

 (Hint: Consider $\vec{\gamma} + \rho \vec{n} + \dot{\rho} \sigma \vec{b}$ where $\vec{n}(s)$ and $\vec{b}(s)$ denote the principal normal and binormal respectively.)
- 4. [15 points] Give an example of a regular parametrized curve in \mathbb{R}^3 that has constant curvature 1 and constant torsion -1 everywhere. Write down formulas for the unit tangent, principal normal and binormal vectors for each point on the curve.
- 5. [10 points] Let $p, q \in C^{\infty}(\mathbb{R})$. Find a diffeomorphism $F(x, y) \colon \mathbb{R}^2 \to \mathbb{R}^2$, that takes the locus of y = p(x) to the locus of x = q(y).
- 6. [15 points] Let $f(x,y,z) \in C^{\infty}(U)$ where U is a neighborhood of $\vec{0} \in \mathbb{R}^3$. Assume $f(\vec{0}) = 0$ and $f_x(\vec{0}) \neq 0$. Prove that there exists a neighborhood $U' \subset U$ of $\vec{0}$ where the locus of f(x,y,z) = 0 is the graph of a function $h(y,z) \in C^{\infty}(V)$ for some neighborhood V of the origin in \mathbb{R}^2 . Thus

$$\{(x, y, z) \mid f(x, y, z) = 0\} \cap U' = \{(h(y, z), y, z) \mid (y, z) \in V\}.$$